(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
a(c(a(x1))) → c(a(c(x1)))
a(a(b(x1))) → a(d(b(x1)))
a(b(x1)) → b(a(a(x1)))
d(d(x1)) → a(d(b(x1)))
b(b(x1)) → b(c(x1))
a(d(c(x1))) → c(a(x1))
b(c(x1)) → a(a(a(x1)))
Rewrite Strategy: INNERMOST
(1) CpxTrsToCdtProof (BOTH BOUNDS(ID, ID) transformation)
Converted CpxTRS to CDT
(2) Obligation:
Complexity Dependency Tuples Problem
Rules:
a(c(a(z0))) → c(a(c(z0)))
a(a(b(z0))) → a(d(b(z0)))
a(b(z0)) → b(a(a(z0)))
a(d(c(z0))) → c(a(z0))
d(d(z0)) → a(d(b(z0)))
b(b(z0)) → b(c(z0))
b(c(z0)) → a(a(a(z0)))
Tuples:
A(c(a(z0))) → c1(A(c(z0)))
A(a(b(z0))) → c2(A(d(b(z0))), D(b(z0)), B(z0))
A(b(z0)) → c3(B(a(a(z0))), A(a(z0)), A(z0))
A(d(c(z0))) → c4(A(z0))
D(d(z0)) → c5(A(d(b(z0))), D(b(z0)), B(z0))
B(b(z0)) → c6(B(c(z0)))
B(c(z0)) → c7(A(a(a(z0))), A(a(z0)), A(z0))
S tuples:
A(c(a(z0))) → c1(A(c(z0)))
A(a(b(z0))) → c2(A(d(b(z0))), D(b(z0)), B(z0))
A(b(z0)) → c3(B(a(a(z0))), A(a(z0)), A(z0))
A(d(c(z0))) → c4(A(z0))
D(d(z0)) → c5(A(d(b(z0))), D(b(z0)), B(z0))
B(b(z0)) → c6(B(c(z0)))
B(c(z0)) → c7(A(a(a(z0))), A(a(z0)), A(z0))
K tuples:none
Defined Rule Symbols:
a, d, b
Defined Pair Symbols:
A, D, B
Compound Symbols:
c1, c2, c3, c4, c5, c6, c7
(3) CdtUnreachableProof (EQUIVALENT transformation)
The following tuples could be removed as they are not reachable from basic start terms:
A(a(b(z0))) → c2(A(d(b(z0))), D(b(z0)), B(z0))
D(d(z0)) → c5(A(d(b(z0))), D(b(z0)), B(z0))
(4) Obligation:
Complexity Dependency Tuples Problem
Rules:
a(c(a(z0))) → c(a(c(z0)))
a(a(b(z0))) → a(d(b(z0)))
a(b(z0)) → b(a(a(z0)))
a(d(c(z0))) → c(a(z0))
d(d(z0)) → a(d(b(z0)))
b(b(z0)) → b(c(z0))
b(c(z0)) → a(a(a(z0)))
Tuples:
B(c(z0)) → c7(A(a(a(z0))), A(a(z0)), A(z0))
A(c(a(z0))) → c1(A(c(z0)))
A(b(z0)) → c3(B(a(a(z0))), A(a(z0)), A(z0))
A(d(c(z0))) → c4(A(z0))
B(b(z0)) → c6(B(c(z0)))
S tuples:
A(c(a(z0))) → c1(A(c(z0)))
A(b(z0)) → c3(B(a(a(z0))), A(a(z0)), A(z0))
A(d(c(z0))) → c4(A(z0))
B(b(z0)) → c6(B(c(z0)))
B(c(z0)) → c7(A(a(a(z0))), A(a(z0)), A(z0))
K tuples:none
Defined Rule Symbols:
a, d, b
Defined Pair Symbols:
B, A
Compound Symbols:
c7, c1, c3, c4, c6
(5) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
A(d(c(z0))) → c4(A(z0))
We considered the (Usable) Rules:
a(d(c(z0))) → c(a(z0))
a(c(a(z0))) → c(a(c(z0)))
a(b(z0)) → b(a(a(z0)))
b(b(z0)) → b(c(z0))
b(c(z0)) → a(a(a(z0)))
And the Tuples:
B(c(z0)) → c7(A(a(a(z0))), A(a(z0)), A(z0))
A(c(a(z0))) → c1(A(c(z0)))
A(b(z0)) → c3(B(a(a(z0))), A(a(z0)), A(z0))
A(d(c(z0))) → c4(A(z0))
B(b(z0)) → c6(B(c(z0)))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(A(x1)) = x1
POL(B(x1)) = [3]x1
POL(a(x1)) = x1
POL(b(x1)) = [5]x1
POL(c(x1)) = x1
POL(c1(x1)) = x1
POL(c3(x1, x2, x3)) = x1 + x2 + x3
POL(c4(x1)) = x1
POL(c6(x1)) = x1
POL(c7(x1, x2, x3)) = x1 + x2 + x3
POL(d(x1)) = [2] + x1
(6) Obligation:
Complexity Dependency Tuples Problem
Rules:
a(c(a(z0))) → c(a(c(z0)))
a(a(b(z0))) → a(d(b(z0)))
a(b(z0)) → b(a(a(z0)))
a(d(c(z0))) → c(a(z0))
d(d(z0)) → a(d(b(z0)))
b(b(z0)) → b(c(z0))
b(c(z0)) → a(a(a(z0)))
Tuples:
B(c(z0)) → c7(A(a(a(z0))), A(a(z0)), A(z0))
A(c(a(z0))) → c1(A(c(z0)))
A(b(z0)) → c3(B(a(a(z0))), A(a(z0)), A(z0))
A(d(c(z0))) → c4(A(z0))
B(b(z0)) → c6(B(c(z0)))
S tuples:
A(c(a(z0))) → c1(A(c(z0)))
A(b(z0)) → c3(B(a(a(z0))), A(a(z0)), A(z0))
B(b(z0)) → c6(B(c(z0)))
B(c(z0)) → c7(A(a(a(z0))), A(a(z0)), A(z0))
K tuples:
A(d(c(z0))) → c4(A(z0))
Defined Rule Symbols:
a, d, b
Defined Pair Symbols:
B, A
Compound Symbols:
c7, c1, c3, c4, c6
(7) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
B(b(z0)) → c6(B(c(z0)))
We considered the (Usable) Rules:
a(d(c(z0))) → c(a(z0))
a(c(a(z0))) → c(a(c(z0)))
a(b(z0)) → b(a(a(z0)))
b(b(z0)) → b(c(z0))
b(c(z0)) → a(a(a(z0)))
And the Tuples:
B(c(z0)) → c7(A(a(a(z0))), A(a(z0)), A(z0))
A(c(a(z0))) → c1(A(c(z0)))
A(b(z0)) → c3(B(a(a(z0))), A(a(z0)), A(z0))
A(d(c(z0))) → c4(A(z0))
B(b(z0)) → c6(B(c(z0)))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(A(x1)) = x1
POL(B(x1)) = [3]x1
POL(a(x1)) = x1
POL(b(x1)) = [4] + [5]x1
POL(c(x1)) = x1
POL(c1(x1)) = x1
POL(c3(x1, x2, x3)) = x1 + x2 + x3
POL(c4(x1)) = x1
POL(c6(x1)) = x1
POL(c7(x1, x2, x3)) = x1 + x2 + x3
POL(d(x1)) = x1
(8) Obligation:
Complexity Dependency Tuples Problem
Rules:
a(c(a(z0))) → c(a(c(z0)))
a(a(b(z0))) → a(d(b(z0)))
a(b(z0)) → b(a(a(z0)))
a(d(c(z0))) → c(a(z0))
d(d(z0)) → a(d(b(z0)))
b(b(z0)) → b(c(z0))
b(c(z0)) → a(a(a(z0)))
Tuples:
B(c(z0)) → c7(A(a(a(z0))), A(a(z0)), A(z0))
A(c(a(z0))) → c1(A(c(z0)))
A(b(z0)) → c3(B(a(a(z0))), A(a(z0)), A(z0))
A(d(c(z0))) → c4(A(z0))
B(b(z0)) → c6(B(c(z0)))
S tuples:
A(c(a(z0))) → c1(A(c(z0)))
A(b(z0)) → c3(B(a(a(z0))), A(a(z0)), A(z0))
B(c(z0)) → c7(A(a(a(z0))), A(a(z0)), A(z0))
K tuples:
A(d(c(z0))) → c4(A(z0))
B(b(z0)) → c6(B(c(z0)))
Defined Rule Symbols:
a, d, b
Defined Pair Symbols:
B, A
Compound Symbols:
c7, c1, c3, c4, c6
(9) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
B(c(z0)) → c7(A(a(a(z0))), A(a(z0)), A(z0))
We considered the (Usable) Rules:
a(d(c(z0))) → c(a(z0))
a(c(a(z0))) → c(a(c(z0)))
a(b(z0)) → b(a(a(z0)))
b(b(z0)) → b(c(z0))
b(c(z0)) → a(a(a(z0)))
And the Tuples:
B(c(z0)) → c7(A(a(a(z0))), A(a(z0)), A(z0))
A(c(a(z0))) → c1(A(c(z0)))
A(b(z0)) → c3(B(a(a(z0))), A(a(z0)), A(z0))
A(d(c(z0))) → c4(A(z0))
B(b(z0)) → c6(B(c(z0)))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(A(x1)) = x1
POL(B(x1)) = [4] + [3]x1
POL(a(x1)) = x1
POL(b(x1)) = [4] + [5]x1
POL(c(x1)) = x1
POL(c1(x1)) = x1
POL(c3(x1, x2, x3)) = x1 + x2 + x3
POL(c4(x1)) = x1
POL(c6(x1)) = x1
POL(c7(x1, x2, x3)) = x1 + x2 + x3
POL(d(x1)) = x1
(10) Obligation:
Complexity Dependency Tuples Problem
Rules:
a(c(a(z0))) → c(a(c(z0)))
a(a(b(z0))) → a(d(b(z0)))
a(b(z0)) → b(a(a(z0)))
a(d(c(z0))) → c(a(z0))
d(d(z0)) → a(d(b(z0)))
b(b(z0)) → b(c(z0))
b(c(z0)) → a(a(a(z0)))
Tuples:
B(c(z0)) → c7(A(a(a(z0))), A(a(z0)), A(z0))
A(c(a(z0))) → c1(A(c(z0)))
A(b(z0)) → c3(B(a(a(z0))), A(a(z0)), A(z0))
A(d(c(z0))) → c4(A(z0))
B(b(z0)) → c6(B(c(z0)))
S tuples:
A(c(a(z0))) → c1(A(c(z0)))
A(b(z0)) → c3(B(a(a(z0))), A(a(z0)), A(z0))
K tuples:
A(d(c(z0))) → c4(A(z0))
B(b(z0)) → c6(B(c(z0)))
B(c(z0)) → c7(A(a(a(z0))), A(a(z0)), A(z0))
Defined Rule Symbols:
a, d, b
Defined Pair Symbols:
B, A
Compound Symbols:
c7, c1, c3, c4, c6
(11) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
A(b(z0)) → c3(B(a(a(z0))), A(a(z0)), A(z0))
We considered the (Usable) Rules:
a(d(c(z0))) → c(a(z0))
a(c(a(z0))) → c(a(c(z0)))
a(b(z0)) → b(a(a(z0)))
b(b(z0)) → b(c(z0))
b(c(z0)) → a(a(a(z0)))
And the Tuples:
B(c(z0)) → c7(A(a(a(z0))), A(a(z0)), A(z0))
A(c(a(z0))) → c1(A(c(z0)))
A(b(z0)) → c3(B(a(a(z0))), A(a(z0)), A(z0))
A(d(c(z0))) → c4(A(z0))
B(b(z0)) → c6(B(c(z0)))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(A(x1)) = x1
POL(B(x1)) = [3]x1
POL(a(x1)) = x1
POL(b(x1)) = [1] + [5]x1
POL(c(x1)) = x1
POL(c1(x1)) = x1
POL(c3(x1, x2, x3)) = x1 + x2 + x3
POL(c4(x1)) = x1
POL(c6(x1)) = x1
POL(c7(x1, x2, x3)) = x1 + x2 + x3
POL(d(x1)) = [4]x1
(12) Obligation:
Complexity Dependency Tuples Problem
Rules:
a(c(a(z0))) → c(a(c(z0)))
a(a(b(z0))) → a(d(b(z0)))
a(b(z0)) → b(a(a(z0)))
a(d(c(z0))) → c(a(z0))
d(d(z0)) → a(d(b(z0)))
b(b(z0)) → b(c(z0))
b(c(z0)) → a(a(a(z0)))
Tuples:
B(c(z0)) → c7(A(a(a(z0))), A(a(z0)), A(z0))
A(c(a(z0))) → c1(A(c(z0)))
A(b(z0)) → c3(B(a(a(z0))), A(a(z0)), A(z0))
A(d(c(z0))) → c4(A(z0))
B(b(z0)) → c6(B(c(z0)))
S tuples:
A(c(a(z0))) → c1(A(c(z0)))
K tuples:
A(d(c(z0))) → c4(A(z0))
B(b(z0)) → c6(B(c(z0)))
B(c(z0)) → c7(A(a(a(z0))), A(a(z0)), A(z0))
A(b(z0)) → c3(B(a(a(z0))), A(a(z0)), A(z0))
Defined Rule Symbols:
a, d, b
Defined Pair Symbols:
B, A
Compound Symbols:
c7, c1, c3, c4, c6
(13) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
B(
c(
z0)) →
c7(
A(
a(
a(
z0))),
A(
a(
z0)),
A(
z0)) by
B(c(c(a(z0)))) → c7(A(a(c(a(c(z0))))), A(a(c(a(z0)))), A(c(a(z0))))
B(c(b(z0))) → c7(A(a(b(a(a(z0))))), A(a(b(z0))), A(b(z0)))
B(c(d(c(z0)))) → c7(A(a(c(a(z0)))), A(a(d(c(z0)))), A(d(c(z0))))
(14) Obligation:
Complexity Dependency Tuples Problem
Rules:
a(c(a(z0))) → c(a(c(z0)))
a(a(b(z0))) → a(d(b(z0)))
a(b(z0)) → b(a(a(z0)))
a(d(c(z0))) → c(a(z0))
d(d(z0)) → a(d(b(z0)))
b(b(z0)) → b(c(z0))
b(c(z0)) → a(a(a(z0)))
Tuples:
A(c(a(z0))) → c1(A(c(z0)))
A(b(z0)) → c3(B(a(a(z0))), A(a(z0)), A(z0))
A(d(c(z0))) → c4(A(z0))
B(b(z0)) → c6(B(c(z0)))
B(c(c(a(z0)))) → c7(A(a(c(a(c(z0))))), A(a(c(a(z0)))), A(c(a(z0))))
B(c(b(z0))) → c7(A(a(b(a(a(z0))))), A(a(b(z0))), A(b(z0)))
B(c(d(c(z0)))) → c7(A(a(c(a(z0)))), A(a(d(c(z0)))), A(d(c(z0))))
S tuples:
A(c(a(z0))) → c1(A(c(z0)))
K tuples:
A(d(c(z0))) → c4(A(z0))
B(b(z0)) → c6(B(c(z0)))
B(c(z0)) → c7(A(a(a(z0))), A(a(z0)), A(z0))
A(b(z0)) → c3(B(a(a(z0))), A(a(z0)), A(z0))
Defined Rule Symbols:
a, d, b
Defined Pair Symbols:
A, B
Compound Symbols:
c1, c3, c4, c6, c7
(15) CdtUnreachableProof (EQUIVALENT transformation)
The following tuples could be removed as they are not reachable from basic start terms:
A(c(a(z0))) → c1(A(c(z0)))
A(b(z0)) → c3(B(a(a(z0))), A(a(z0)), A(z0))
A(d(c(z0))) → c4(A(z0))
B(b(z0)) → c6(B(c(z0)))
B(c(c(a(z0)))) → c7(A(a(c(a(c(z0))))), A(a(c(a(z0)))), A(c(a(z0))))
B(c(b(z0))) → c7(A(a(b(a(a(z0))))), A(a(b(z0))), A(b(z0)))
B(c(d(c(z0)))) → c7(A(a(c(a(z0)))), A(a(d(c(z0)))), A(d(c(z0))))
(16) Obligation:
Complexity Dependency Tuples Problem
Rules:
a(c(a(z0))) → c(a(c(z0)))
a(a(b(z0))) → a(d(b(z0)))
a(b(z0)) → b(a(a(z0)))
a(d(c(z0))) → c(a(z0))
d(d(z0)) → a(d(b(z0)))
b(b(z0)) → b(c(z0))
b(c(z0)) → a(a(a(z0)))
Tuples:none
S tuples:none
K tuples:none
Defined Rule Symbols:
a, d, b
Defined Pair Symbols:none
Compound Symbols:none
(17) SIsEmptyProof (EQUIVALENT transformation)
The set S is empty
(18) BOUNDS(O(1), O(1))